COGENERATION

Opportunities in Today's Power Markets

R. W. Meidel, Vice-President-Power Projects ExxonMobil Power and Gas Services Inc

Presentation Outline

- Cogeneration at ExxonMobil
- Investment Considerations
 - Opportunity Identification
 - Opportunity Optimization
 - Opportunity Assessment
- Enabling Power Market Structures

Why Cogeneration?

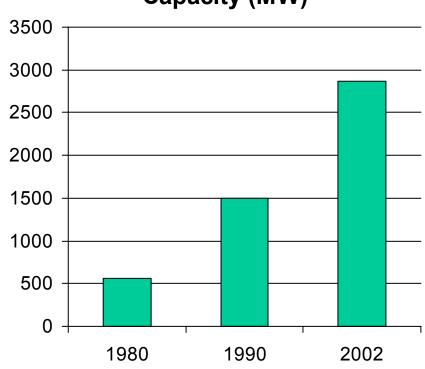
LOWER

SUPPLY

Singapore POX / Cogen 155 MW Total Capacity **ExonMobil**Gas & Power Marketing

Background

- Traditional practice:
 - Burn fuel via boilers to generate steam
 - Purchase electricity
- Conventional power generation produces substantial waste heat
 - Increased consumption of energy resources
 - Higher costs
 - Greater emissions of CO₂, NO_x, SO_x


Baytown, Texas, USA 407 MW Total Capacity

- Cogeneration is an attractive alternative
 - Generate power and convert waste heat to steam
 - Efficiency can be twice as high as thermal power generation
 - Fueled with natural gas, CO₂ emissions lower still

ExxonMobil: A Leader in Cogeneration

- Nearly 2,900 MW of installed cogeneration capacity; first installation in 1950
- Cogeneration met ~ 70 % of global refining / chemical plant electricity needs in 2001
- Worldwide annual energy <u>savings</u> equate to more than 25% of the total <u>generated</u> by all solar and wind facilities worldwide
- CO₂ emissions reduced ~ 7 million tons / year
- Projects under development / construction increase cogeneration capacity 35+%

ExxonMobil Cogeneration Capacity (MW)

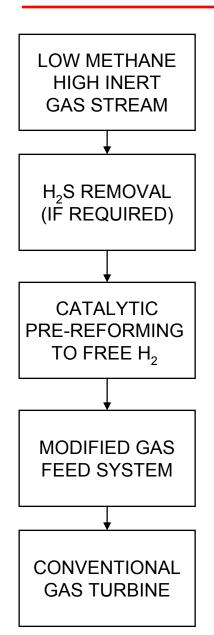
Cogeneration Investment Considerations

- Opportunity Identification
 - Site Requirements
 - Fuel Considerations
 - ExxonMobil's Patented Gas Utilization Technology
 - Existing Electricity Suppliers & Tariffs
 - Other Operating or Economic
 Considerations
- Technology Selection
- Opportunity Optimization

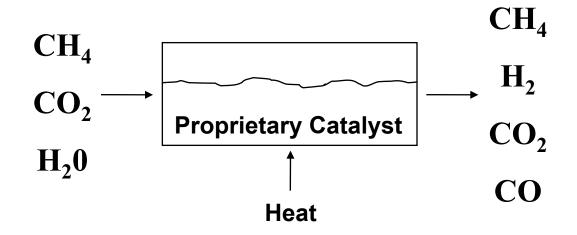
Baton Rouge, Louisiana, USA 445 MW Total Capacity

Site Requirements

- First consider steps to optimize existing operations with minimal investment
- Identify site steam and power requirements
 - Normal requirements
 - Infrequent or unusual requirements
 - Future expansions and impact on requirements
 - Seasonality
 - Reliability / operating cushion
 - Backup



Cogen Fuel


- Evaluate produced versus purchased fuel
- Produced fuel includes refinery fuel gas, petroleum coke, byproducts, etc; Considerations:
 - Normal production levels
 - Fuel quality variability; Potential for abnormal variation
 - Seasonality
 - Cost (net of credits such as cost avoidance of waste fuel disposal)
- Availability and specifications of purchased fuel
- Fuel switching opportunities
 - Substitution / Blending
- Low quality fuel may be suitable for power generation

ExxonMobil Patented Technology

- ExxonMobil's low BTU gas utilization technology transforms low methane, high inert gas into gas turbine fuel containing an increased fraction of hydrogen gas
- Hydrogen is liberated from the fuel gas stream using a commercially proven catalytic process

Major Reactions:

ExconMobil |

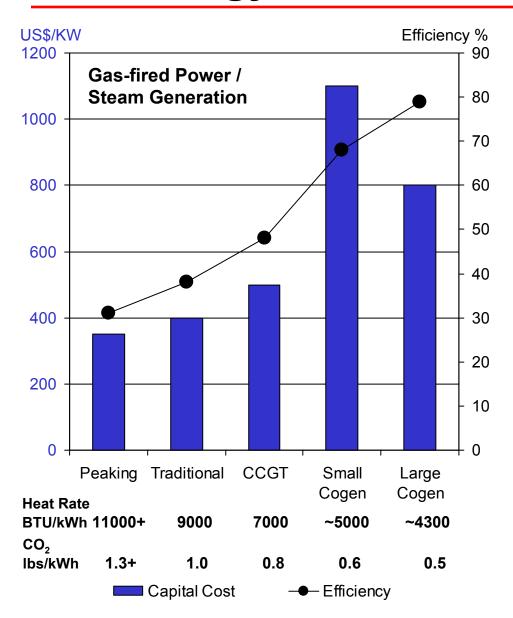
Electricity Tariffs & Service Contracts

- Understand economic impact of existing agreements
 - Cogeneration may reduce / eliminate grid related charges
 - Offtake provisions / commercial incentives provided by regulations
- Consider existing power purchase terms
 - Demand charges, energy charges, connection charges, etc
 - Pricing for firm versus varying degrees of interruptible supply
- Previous long-term commitments may limit flexibility to consider internal power generation
 - Consider renegotiating or buying-out of existing commitments

Gas & Power Marketing

Other Operating / Economic Considerations

Potential Incentives / Opportunities

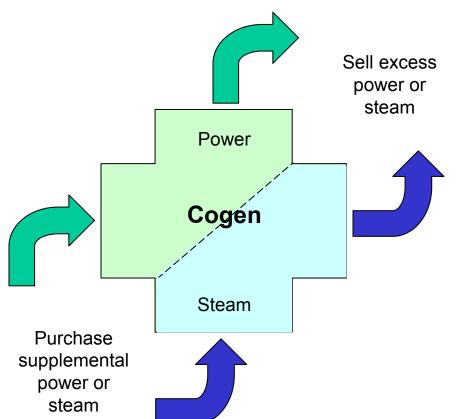

- Investment / cost avoidance
 - Equipment upgrades
 - Environmental retrofits
 - Disposal of by-products used as fuel
- Optimize production process
 - Economic production of by-products
 - Efficient use of refinery gas
- Spare power capacity of existing tie-ins to power grid

Potential Disincentives / Constraints

- Emissions implications of fuel choice
 - Pollution control equipment
 - Investment cost versus alternative fuel cost
- Physical space constraints
- Availability of quality cooling water
- Investment to increase fuel gas pressure if high-pressure gas not available

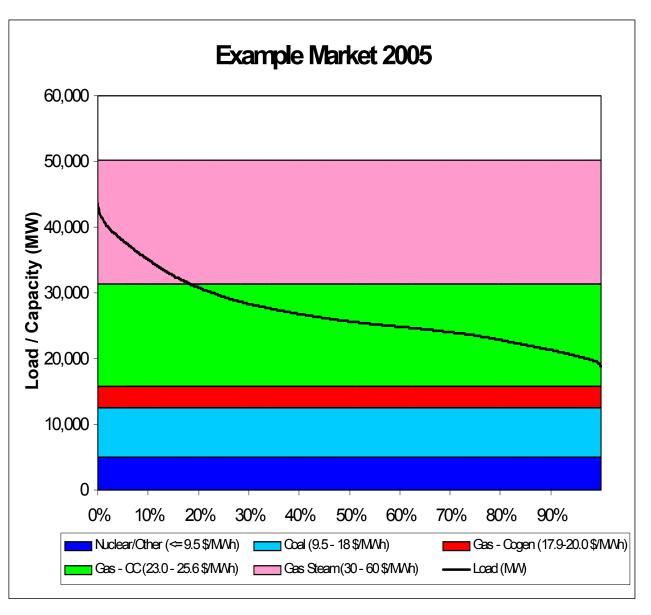
Whether or not a mismatch between power and steam generation is a constraint or an opportunity depends on the commercial environment

Technology Selection



- Matching site power demand may not take full advantage of available steam sink
 - Capture cost savings available from larger, more efficient units
- Trade-offs between capital investment, operating costs and risk (e.g. power sales price and dispatch risk) for each technology choice
- Evalute alternatives
 - Boiler/steam turbine (gas, liquids, solids)
 - CCGT
 - Gasification

Opportunity Optimization


- Design cogeneration capacity to optimize integrated economics at acceptable risk
 - Adjacent facilities may comprise a single site

- First pass: Cogen opportunity covers base-load <u>steam</u> needs
- Next pass: What power output optimizes integrated project return?
- Optimum facility may be one with multiple channels for power / steam sourcing and use
- Flexible outlets for sale of excess power or steam / heat generation
- Options for sourcing additional power or steam to augment internal generation
- Ancillary sales opportunities

Opportunity / Market Assessment

- Load duration curve (demand) versus dispatch rank
- Assumes plant with lowest marginal cost runs the most hours
- Cogen plants typically "must run" due to steam requirements
 - Serves base-load demand
- Power bid to ensure dispatch

Enabling Power Market Structures

- Rational dispatch
 - No artificial separation of steam / power as discrete products; Cannot be made separately; Integral to site operations
 - Cogenerators allowed to purchase net requirements or sell potential excess without discrimination
- Use-based transmission / market / ancillary charges
 - Charges based on actual use to support <u>net</u> internal load
- Flexibility around market participation / compliance costs
 - Cogenerators may buy services from third parties (e.g. reserve capacity)
 - Alternatives for direct sales, or indirect sale via bilateral contract with market participant

Conclusion

- Cogeneration
 - Increases steam reliability
 - Enhances cost competitiveness of products; directionally higher dispatch rates
 - Can reduces demand for purchased fuels
 - Reduces emissions per unit of electricity generated
- Power market rules should encourage opportunities for both industry and the public to realize the benefits of cogeneration